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Abstract

We investigate numerically the magnetic properties of the 3D Isotropic and Anisotropic Hubbard model at half-

filling on a Linux cluster. The behavior of the transition temperature as a function of the anisotropic hopping parameter

is qualitatively described. In the Isotropic model we measure the scaling properties of the susceptibility finding

agreement with the magnetic critical exponents of the 3D Heisenberg model. We describe several particularities con-

cerning the implementation of our simulation in a cluster of personal computers paying special attention to the issues

related with the parallelization of the algorithm.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

Many electron systems have been for many years the playground for testing models of superconduc-

tivity. In this framework the Hubbard model [1] is expected to reproduce the essential features that purely
electronic degrees of freedom are accountable for. In the Hubbard Hamiltonian thermal agitation is

modeled via an inter-orbital hopping term, while electrostatic interaction is taken into account via an

effective Coulomb coupling proportional to the charge density.

The simplicity of this formulation is only apparent. The Hubbard model has (partial) exact solutions

only in one dimension. In two or more dimensions only approximate techniques can be applied. Ground

state properties and approximate phase diagrams have been analytically derived in the limits U ! 0 and

U ! 1 by using Random Phase Approximation and Strong Coupling expansions, respectively. It is clear

that the range of validity of analytical approaches is always an issue, moreover we are interested in the
physics of the system at the (more physical) intermediate values of the coupling. In those regions where

strong and weak coupling expansions break down Quantum Monte Carlo (QMC) techniques are useful,
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not only for testing the validity of other analytical methods such as Mean Field, but as a powerful tool to

obtain first-principle results.

The numerical investigation of the Hubbard model is however very costly. Away from half-filled bands
the path integral measure is no longer positive-definite and Monte Carlo averages of physical observables

suffer from large fluctuations. Extracting meaningful results requires extremely large statistics. Even in half-

filled bands the complexity of the numerical simulation is high, as we shall discuss throughout the paper.

One has to keep in mind that we are dealing with fermionic particles in a region of parameter space in which

the Coulomb interaction is big enough for the fermion propagator to be close to singular. Inverting the

propagator is a computationally very expensive operation. The most popular algorithm [2], the determi-

nantal method, has a computational complexity which grows with the cube of the system size. Therefore

while the system has been studied extensively in two dimensions, in three dimensions the information we
have is more restricted.

We decided to investigate in this work the magnetic properties of the three dimensional Hubbard model

at half-filling around the N�eel phase transition. We concentrate on two issues: the transition temperature,

and the universality class of the transition. Pioneering works [3,4] on the phase diagram were carried out in

the 1980s on small lattices. The model presents a phase transition line in the plane b� U separating a region

in which the system is in a disordered paramagnetic phase from another region in which the electron spins

are aligned in a staggered way. The actual value of the transition temperature as a function of U remains an

open problem. Recent numerical simulations [5] have shown that the phase transition takes place at
temperatures much lower than expected from earlier works. Another question to be discerned numerically

is the universality class of the phase transition line. Close to the Quantum Critical Point at T ¼ 0 the

transition should be mean field like (4D Heisenberg exponents). Everywhere else it is expected to be in the

universality class of the three dimensional quantum Heisenberg antiferromagnet [6].

In recent years the development of clusters of commercial processors has boosted the computing ca-

pabilities at research institutes. This low weight approach to high speed computing is becoming a real

alternative to more conventional approaches based on parallel supercomputers traditionally developed by

industry. While price is an obvious advantage in favor of hand made clusters of PCs, effectiveness is both a
model and algorithm dependent issue.

Obvious cases for massive cluster simulation are problems that, while not requiring a huge amount of

memory, do require the simulation of many copies of the same program. The speeding up is achieved by

setting up different starting conditions for the different copies of the program. On single processors, high

performances can be achieved by using the capabilities of recently developed processors, such as vector-

ization [7]. In this situation the so-called farm method on clusters of PCs is a cost-effective, relatively easy to

use, source of computer power. The previous statement is only partially true in our case. It is not obvious

that the farm method is the best solution for the Hubbard model. Warm up times in large lattices might be
very large and to have thermalization effects under control it is desirable to have a long single Monte Carlo

history.

These and related questions will be addressed here. Simulations have been carried out on the PC cluster

at the Center for Data Intensive Computing in Brookhaven National Laboratory. It consists of about 150

Pentium III processors. Clock speeds range from 500 MHz to 1 GHz, and the available DRAM is 1 Gbyte

per processor. Communication between the processors is achieved via a commercial Fast Ethernet switch

which provides a one-way bandwidth per channel of up to 100 Mbits/s.

The paper is organized as follows: we first briefly review the model and algorithm in Section 2 in order to
fix our notations; the numerical simulation, observables and dynamics of the Monte Carlo process is

discussed in Section 3. Our results for the Isotropic and Anisotropic Hubbard model are described in

Sections 4 and 5, respectively. Section 6 contains conclusions and comments about future perspectives. We

left for the Appendix A some particularities related to our implementation of the simulation in a cluster of

PCs.
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2. Model and numerical algorithm

In the following, we summarize the standard procedure to perform Monte Carlo simulations on the
Hubbard Model [2,8,9] and fix our notation. Consider the Hubbard Hamiltonian at half-filling

Ĥ ¼ �t
X
hi ji;a

cyiacja
�

þ cyjacia
�
þ U

X
i

niþ
�

� 1
2

�
ni�
�

� 1
2

�
� K̂ þ V̂ : ð1Þ

Here, the index i ¼ 0; . . . ; V � LD labels the sites of a lattice of side L in D spatial dimensions on which
periodic boundary conditions have been imposed; cyia and cia are, respectively, the creation and annihilation

operators for electrons with a z-component of spin a at the site i; nia ¼ cyiacia denotes the usual number

operator. The sum hiji is over all pairs of nearest neighbors on the lattice. The first term models the thermal

agitation, whose strength is characterized by the hopping parameter t; the second term corresponds to an

electrostatic Coulomb repulsion of intensity U .

The path-integral representation is obtained by introducing an imaginary time coordinate s, and con-

sidering the action of all possible configurations of the fields between s ¼ 0 and s ¼ b. The partition

function of the equivalent statistical model reads

Z � Tr e�Ŝ
� �

¼ Tr e�bĤ
� �

: ð2Þ

In order to perform a numerical simulation the theory is defined on a lattice in space and time dimensions.
The partition function of the discretized theory can be written as

Z ¼ Tr e�DsK̂�DsV̂
� �Nt

; ð3Þ

where we defined b � DsNt, with Ds lattice spacing in the temporal direction and Nt number of time slices.

The role of b is analogous to the inverse of the temperature T of a classical statistical model in Dþ 1

dimensions.

In order to have a well defined relative probability for each configuration in phase space, fermions must

be integrated out analytically in the partition function (3). In a first step the kinetic and potential terms are

separated in the partition function by the splitting

Z ¼ Tr e�DsK̂ e�DsV̂
� �Nt

þ O Ds2 K̂; V̂
h i� �

: ð4Þ

We will neglect the contributions coming from the second term on the r.h.s of Eq. (4). The leading order in

the error introduced by the so-called Trotter approximation is proportional to the square of Ds. This
systematic error has to be kept under control in actual numerical simulations by choosing Ds small enough

(i.e., smaller than the statistical error).

The kinetic part of the Hamiltonian is a quadratic form in fermion fields, calculating the trace is

therefore trivial. In order to write the interaction term as a quadratic form as well one introduces a set of

auxiliary boson fields [10]

e�DsUðniþ�1=2Þðni��1=2Þ ¼ e�DsU=4

2

X
riðlÞ¼�1

e�DsriðlÞkðniþ�ni�Þ; ð5Þ

where frgðlÞ denotes an Ising field defined in the spatial lattice at the time slice l ¼ 1; . . . ;Nt. The constant k
is related to the parameters of the Hamiltonian by the equation coshðDskÞ ¼ expðDsU=2Þ for positive k.
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After all these manipulations it is possible to perform the trace in (2) yielding

Z ¼
X
frðlÞg

det M̂þ det M̂�; ð6Þ

with

M̂a ¼ 1þ B̂a
Nt
B̂a
Nt�1 � � � B̂a

1 � 1þ ÂaðNtÞ; ð7Þ

where we have defined the matrices

B̂a
l ¼ e�kDsadijriðlÞe�DsK̂ ; ð8Þ
ÂaðlÞ ¼ B̂a
l B̂

a
l�1 � � � B̂a

1B̂
a
Nt
� � � B̂a

lþ1: ð9Þ

Summarizing, we have substituted the local fermionic interaction in the partition function by an Ising

model with a complicated multi-spin interaction. The remaining sum over the Ising field configurations in

(6) can be computed by standard Monte Carlo techniques. We adopt here the approach proposed by

Blanckenbecler [8], extended to the Hubbard model at low temperatures in [2,9].
We refer to the above cited works for a discussion on the details of the algorithm. In essence the update

mechanism is based on the updating of the equal-time Green�s function for an electron of spin a propa-

gating through the field created by rðlÞ

ĜaðlÞij � T ciaðlDsÞcyjaðlDsÞ
� �� �

¼ ½1þ ÂaðlÞ��1

ij ; ð10Þ

with T denoting the temporal ordering operator.

The Green�s function turns out to be the fundamental object of the simulation since it contains the

information needed to update the field rðlÞ. Besides, along the simulation, observables like the energies and

the local magnetic moment are calculated as expectation values of certain matrix elements of ĜðlÞ.
The computation of the Green�s function is unfortunately also the most expensive part of the algorithm

in terms of computing time. The numerical evaluation of Eq. (10) requires performing Nt multiplications of

matrices of dimension V . That requires order Nt � V 3 operations plus the inversion of the resulting matrix,

which takes of order V 3 operations.

Timings get worse at low temperature since the matrices B̂l get more and more ill-conditioned when

increasing b. The computation of the product in Eq. (10) is then plagued with round-off errors. Obtaining a

meaningful result requires intermediate re-orthogonalizations in order to isolate the divergent scales in the

matrix product [9]. For very large values of b the Green�s function cannot even be calculated in a computer

due to finite precision problems.
The situation can be partially alleviated by realizing that Eq. (10) immediately implies

cGaðlþ 1Þ ¼ cBaðlþ 1Þ;cGaðlÞ;cBa�1ðlþ 1Þ; ð11Þ

which can be used to ‘‘advance’’ the Green�s function from time slice l to lþ 1. The significant reduction in

number of operations, comes at the price of increasing the round-off errors. Due to this fact Eq. (11) can be

used a limited number of consecutive times, say till round-off errors become of the order of the statistical

ones. One then has to recompute ĜðlÞ according to Eq. (10). For the reasons discussed above, at low

temperatures, say b > 6, the range of applicability of Eq. (11) is very limited.
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It is clear at this point that to accelerate the simulation we have to concentrate efforts in speeding up

matrix operations, in particular the matrix multiplication. We address this point on more quantitative

grounds in Appendix A, where our implementation of the algorithm in a cluster is also discussed.
3. The Monte Carlo simulation

We have run numerical simulations on the general anisotropic Hubbard model in d ¼ 3

Ĥ ¼ �t
X
hi ji;a

cyiacja
�

þ cyjacia
�
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2

�
: ð12Þ

In this notation tz and t represent, respectively, the inter-planar and the in-plane hopping parameters.

Varying tz the system undergoes a crossover between the purely two dimensional behavior at tz ¼ 0 and the

three dimensional isotropic case at t ¼ tz. Intermediate values of tz model situations in which the material is

better represented by a weakly coupled set of two dimensional layers, than by a three dimensional isotropic

lattice.
The phase diagram of the Hubbard model in d ¼ 3 contains a phase transition line in the plane b� U .

The high temperature phase is paramagnetic while in the low temperature region the ground state is an

antiferromagnet with the electron spins oriented staggered wise in all spatial directions. The limiting be-

havior of the model for large U corresponds to the three dimensional quantum Heisenberg model. At U ¼ 0

the system becomes a gas of non-interacting electrons which shows no transition at all.

Along the numerical simulation we measure the kinetic and the Coulomb energies via the expectation

value of the following operators

ek ¼
N

4D
�
X
i;l̂

cyi aciþl̂ a

� �
; ð13Þ
ec ¼ N �
X
i

niþni�h i; ð14Þ

where the index l̂ ¼ 0; . . . ; 5 denotes the six spatial directions and the normalization factor N ¼ 1=ðVNtÞ
accounting for the sum over spatial and temporal lattices has been used. We also measure the local

magnetic moment defined as

S2 ¼ N3
4
ðniþ
D

� ni�Þ2
E
: ð15Þ

Both, energies and magnetic moment, can be expressed as appropriate combinations of matrix elements of

the Green�s function.
The Ising variables are coupled to the z-component of the electron spin at each site. Taking this into

account we construct the order parameter in the following way. At each time slice l we define

ml
stag ¼

1

V

X
i

ð�1Þxþyþz � rx y z; ð16Þ

where ðx; y; zÞ are the coordinates of site i. The average over configurations is defined by

Ml
stag ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðml

stagÞ
2

q
 �
: ð17Þ
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Adding up the contributions of all time slices we get

Mstag ¼
1

Nt

X
l

Ml
stag: ð18Þ

Along the simulation we have set t ¼ 1. In this paper we concentrate on the results for the isotropic case

t ¼ tz. Some exploratory studies at tz < t have also been performed. In all cases we work at fixed U and

sweep through b looking for the value at which the magnetic susceptibility has a maximum. To keep

systematic errors under control we use always Ds � 0:125. We are interested in the scaling properties of the

susceptibility at the phase transition in order to measure the magnetic critical exponents. For this purpose

we concentrate most of our statistics at a single value of the Coulomb interaction, U ¼ 6. Here we run
lattice sizes L ¼ 4; 6; 8; 10 with Monte Carlo times ranging from 105 for L ¼ 4 to 104 for L ¼ 10 at each b
value. We discard between 10% and 20% of the data as thermalization time, depending on the parameter

space point and the lattice size. The total computing time spent is the equivalent of about 240 months in a

Pentium III processor at 1 GHz.

To assess the statistical quality of our data, following [11] we define the unnormalized autocorrelation

function for the observable O

COðtÞ ¼
1

N � t

XN�t

i¼1

OiOiþt � hOi2 ð19Þ

as well as the normalized one

qOðtÞ ¼
COðtÞ
COð0Þ

: ð20Þ

The integrated autocorrelation time for O, sintO , can be measured using the window method

sintO ðtÞ ¼ 1

2
þ
Xt

t0¼1

qOðt0Þ ð21Þ

for large enough t, which is in practice selected self-consistently. We use t in the range 5sint, 10sint, and we

check that the obtained sint remains stable as the window in t is increased.
In Fig. 1 we plot the autocorrelation function in L ¼ 4 for the staggered magnetization (left side) and for

the kinetic energy (right side). We observe the staggered magnetization building up stronger autocorrelations
0 100 200 300 400 500 600

0

0.5

1

ρ M
st

ag

β = 3
β = 5
β = 7

0        10        20        30        40        50       60        70        80       90       100

MC time MC time

0

0.5

1

ρ E

β = 3
β = 7

(a) (b)

Fig. 1. Autocorrelation function of the staggered magnetization (a) and of the kinetic energy (b). Note the change in the scale between

the two plots.
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as the phase transition is approached. From this point of view the kinetic energy seems to be insensitive to

changes in the temperature. We conclude from here that the order parameter is a better observable to discuss

the onset of criticality on the model.
4. Isotropic Hubbard model

We have run numerical simulations in lattices ranging from L ¼ 4 to L ¼ 10 to investigate the magnetic

behavior of the system around the N�eel phase transition. For this purpose we have measured the order

parameter defined in Eq. (18) and the staggered magnetic susceptibility

vstag ¼ V
X
l

ml
stag

 ,
Nt

* !2+
; ð22Þ

which is a monotonically increasing function of b for so is ðMstagÞ2.
At low b values, high temperatures, the system is in a disordered paramagnetic phase. The mean value of

the order parameter is zero up to corrections proportional to 1=V . In Fig. 2(a), we plot the MC evolution of

Mstag at b ¼ 2 in a L ¼ 6 lattice with U ¼ 6. As temperature decreases, and the magnetic phase transition is

approached, the value of the order parameter increases indicating the tendency of the electron spins to

organize themselves in a staggered way. In Fig. 2(b) the MC evolution of Mstag at b ¼ 5 in a L ¼ 6 lattice at

the same value of U is plotted. We see the system is flipping back and forth between the disordered

paramagnetic phase and the staggered ordered one. There is a constant factor ð1� e�DsU Þ�1
relating the

two-point correlation functions expressed in terms of the electron spin with the ones expressed in terms of

the Ising fields [10]. Our plots of magnetic variables contain already this factor.

The staggered magnetization is an increasing function of b for fixed U . In fact, for all the lattice sizes we

investigatedMstag increases with b reaching a maximum at some point, and developing a plateau afterwards.

The onset of such plateaus is related to the maximal value that the magnetization can reach in that par-

ticular lattice size. In Fig. 3 we display the results for an L ¼ 4 lattice for different values of the Coulomb

interaction. The values of the observables on the plateaus can be viewed as the asymptotic values in the

T ¼ 0 limit.
In Fig. 4, we plot those asymptotic values versus the inverse of the lattice size at U ¼ 6. Spin wave theory

predicts that the fluctuations giving rise to spin–spin correlations decay as 1=L [12]. Our results support this

prediction for L > 4 giving a value for Mstag in the thermodynamic limit of 0.15(2). Including L ¼ 4 the best
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Fig. 2. Monte Carlo evolution of Mstag at b ¼ 2 (a) and b ¼ 5 (b) for a L ¼ 6 lattice at U ¼ 6.
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fit is a 1=L2 extrapolation which leads to a value ofMstag compatible with the previous one. We can therefore

not give a conclusive answer to this issue but we are inclined to prefer the fit without the small lattice

because finite size effects are likely to be uncontrolled for L ¼ 4. Indeed, the asymptotic value of ðMstagÞ2
starts to stabilize only from L ¼ 6 on.

Next, we focus on the critical behavior of the system. We concentrate our largest statistics in this

particular aspect. Our aim is studying the scaling of the order parameter and the susceptibility close to the

phase transition temperature, and finally extracting the magnetic critical exponents. A first question arising
is the actual value of the transition temperature. The most recent work the authors are aware of [5] quotes a

value Tc � 0:3 for the N�eel transition at U ¼ 6. This temperature is certainly much lower than the ones

reported in the pioneer works of the 1980s (see e.g., [4]). Our purpose is to give an estimation of the critical

temperature based on the measurements of the order parameter.

In Fig. 5, we plot the histograms corresponding to the time evolution of Mstag at U ¼ 6 for increasing

lattice sizes at b ¼ 4 (b) and b ¼ 5 (a). The asymmetry of the distributions at b ¼ 4 indicates that we are

close to a phase transition. However the system is still clearly in the paramagnetic side because when in-

creasing the lattice size the peak of the magnetization in the paramagnetic region tends to dominate the
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distribution while the other runs away. The behavior is radically different at b ¼ 5. The peak corresponding

to the paramagnetic phase decreases when the lattice size gets bigger, corresponding therefore to a finite size

effect. Conversely, the peak in the symmetry broken phase tends to grow. Summarizing, the system is al-

ready in the antiferromagnetic N�eel phase at b ¼ 5 because for increasing lattice size the system stabilizes in

the staggered phase. This somehow ad-hoc procedure to locate the phase transition has been very useful for

us, since the measurement of cumulants of the magnetization turned out to be extremely noisy.

From the order parameter distributions it is clear that the magnetic transition takes place between
T ¼ 0:25 and T ¼ 0:20. Our results therefore support the ones of Staudt and coworkers in the sense that the

phase transition occurs at a value much lower than traditionally expected. The fact that we measure a value

even slightly smaller might be related to the use of a different observable. In [5] the authors use cumulants of

the energy to locate the critical point, while our results are based on order parameter measurements. In

principle, different estimators give slightly different results in finite lattices.

The behavior of the staggered susceptibility (Eq. (22)) at U ¼ 6 across the parameter space for different

lattice sizes is presented in Fig. 6. We observe the susceptibility growing monotonically until reaching a
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plateau reflecting the behavior of the magnetization itself. The saturation of the magnetization, and the

subsequent plateau in the susceptibility raises doubts on the interpretation of the peak in the susceptibility

as a good observable to locate the phase transition. In principle, there is no reason to believe that the b
value at which the susceptibility reaches the plateau has anything to do with the critical temperature of the

N�eel transition.
We observe that the onset of the plateaus comes close to but clearly after b ¼ 5 in all cases. Taking b ¼ 5

as our best estimate for the critical temperature, and using the scaling law

vstagðTcÞ / Lc=m: ð23Þ

Our result for the magnetic critical exponent should agree with the one of the three dimensional Heisenberg

model [6], that is, c=m 	 1:98. Our estimation for the magnetic critical exponent is in good agreement with

this expectation. In Fig. 7 we plot in log–log scale the values of the susceptibility versus the lattice size. The

result of the linear fit gives a value of c=m ¼ 2:08ð9Þ.
5. Anisotropic Hubbard model

The introduction of an anisotropic hopping parameter tz allows us to interpolate between the purely two

dimensional behavior (tz ¼ 0) and the perfectly isotropic three dimensional lattice (tz ¼ t).Wehave done some

exploratory studies at intermediate values of tz to get some insight on the crossover behavior of the model.

In Fig. 8 we plot the result for the kinetic energy in D ¼ 2; 3 and at several intermediate values of the
hopping parameter. The interpolation is smooth in all cases. As a function of tz, the interpolation is linear

for the high temperature case, and faster than linear when the temperature is lowered. This can be un-

derstood easily taking into account that at low temperatures the correlation between planes is higher and

compensates the smaller value of the interplanar tz hopping coupling.

In two dimensions a phase transition to an antiferromagnetic ordered phase is expected at T ¼ 0. In

principle we can ask for the dependence of the phase transition temperature on the anisotropic hopping

parameter tz. Evidently decreasing tz will result in a decrease of the transition temperature. The actual

dependence TcðtzÞ is an interesting monitor of the form of the quantum fluctuations which disorder the
ground state at T ¼ 0 in D ¼ 2.
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As a first step in that direction we have measured the staggered magnetization for a small lattice, L ¼ 4,

for different values of tz. The order parameter flips between the disordered phase and the ordered one at

b ¼ 6 producing these distributions plotted in Fig. 9. We can observe that as tz is lowered, the system is the
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more and more in the disordered phase, meaning that the transition temperature in fact decreases as tz goes
to zero. Eventually, the value of the critical temperature should go to zero, where the quantum critical point

of the D ¼ 2 Hubbard model is expected to be.
6. Summary and conclusions

We have investigated the properties of the magnetic phase transition in the three dimensional Hubbard

model. The measurement of the order parameter allows us to give an estimation of the critical temperature

at U ¼ 6. From the scaling of the magnetic susceptibility we compute the magnetic critical exponent c=m
which is in agreement with the magnetic exponent of the three dimensional Heisenberg model.

The dependence of the phase transition temperature on the anisotropic hopping parameter is a very

interesting project from the numerical point of view. In this area we are aware of results based on Dy-

namical Mean Field Theory and the Two Particle Self Consistent approach [13]. It would certainly be of

interest to probe such results in a Monte Carlo simulation.

We have shown that computationally costly thermodynamic quantities such as distributions of the

order parameter and critical exponents can be computed with moderate-large computing resources using

a well known algorithm. This fact should not dismiss a very important issue, which is the development

of better core algorithms. A consequence of the impressive development of computer technologies is
that we are now able to produce results that we could not have dreamed of only 5 years ago. Such

technical developments should go hand by hand with work in algorithm improvement.
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Appendix A. The Hubbard model on a PC cluster

The question we try to answer here is how to make optimal use of the PC cluster to speed up our nu-

merical investigation of the Hubbard model using the determinantal method. As we pointed out in the

introduction the farm method might not been suitable to simulate large lattices due to thermalization issues.

The answer to our question is probably that a combination of both, the farm method, and a parallel version

of the algorithm would do best.
The most serious problem regarding parallelization techniques applied to this algorithm is the extreme

non-locality of the update mechanism. Let us suppose that we distribute the Ising spin variables among np

processors in such a way that each processor takes care of the update of a piece of the spatial lattice. It is

easy to show that such strategy could not work. Consider for instance the update of the spin rs (we will

omit the time index l throughout this section for notation clarity) The update probability depends, among

other things, on the diagonal element of the Green�s function Ga
ss. The crucial point is that if the spin rs is

flipped all the elements of the Green�s function change [2]

Ga
ij ! fGa

ij þ Ga
is � Ga

sj if j 6¼ s;
Ga

is ! Ga
is þ f ðGa

is � Ga
ss � Ga

isÞ if j ¼ s;
ðA:1Þ
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where f is a constant factor independent of the spatial coordinates. In particular the change affects all

diagonal elements which enter in the update probability of all the other rs on the the processors. This

implies that every time a spin is flipped the recomputed Green�s function should be communicated to all
processors. Synchronizing such communication is likely to be impossible. In any case, from a strictly

performance point of view it is clear such an strategy could not pay off. The update of the Ising fields within

a same time slice must therefore be sequential.

A look at the definition of the Green�s function (Eq. (10)) tells us that the update of the different time

slices cannot be a distributed task either. The value of the Green�s function at a particular time slice l,

depends on the state of the Ising spins on all the other time slices. From the previous analysis we conclude

that the update process is inherently sequential in all dimensions.

A possibility to still make use of computing cooperation among several processors is to parallelize the
matrix operations [14]. We observe in Eq. (A.1) that despite all the matrix elements Ga

ij of the Green�s
function change after a spin flip, such change can be computed from the original Ga

ij plus a factor which

only depends on the elements of Ga belonging to the row and column of the particular site s being updated

Ĝa ¼

� � � � � � Ga
1s � � � � � �

� � � � � � � � � � � � � � �
� � � � � � Ga

s�1s � � � � � �
Ga

s1 � � � Ga
ss � � � Ga

sV

� � � � � � Ga
sþ1s � � � � � �

� � � � � � � � � � � � � � �
� � � � � � Ga

Vs � � � � � �

0BBBBBBBB@

1CCCCCCCCA
:

The parallelization strategy takes profit of this regularity. The matrix elements of the different operators are

distributed column-wise among the processors. When a matrix operation takes place, e.g., a matrix multi-

plication, each processor computes only the part corresponding to the column it is responsible for. The

update of the field rs is done simultaneously on all the processors. In principle, since the random number

sequence is the same for all of them, the result of the update is the same on all of them. Therefore this
mechanism, although redundant, is harmless. In the program, before the update function is called, the

processor containing the column Ga
is broadcast this column to all the others. As explained before this is

the only information needed to recompute the Green�s function during the update process. Note that the

portion of the s-row needed by each processor is stored locally, and therefore needs not to be communicated.
0                      4                      8                     12
np

0

4

8

np
 .t

np
 / 

t 1
 

L=4
L=6
L=8
L=12

Fig. 10. Speed up of the simulation as a function of the number of processors using the parallelization method described in the text.
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In Fig. 10 we show the speed up in the calculation of the Green�s function when using the proposed

strategy. For small and intermediate lattice sizes the farm method is still the best option. For big lattices

(LP 10) the algorithm starts to scale reasonably well. It is clear that there is a bottleneck generated by the
communication of matrix elements during the calculation. The jam tends to improve when the lattice size

gets big because the processors have more operations to perform and therefore do not block the channels

trying to submit and retrieve information constantly.

Summarizing, the lesson to extract from here is that the algorithm is parallelizable. Using this scheme

instead of a farm method pays off for big lattices. It is also clear that we have a very modest switch (Fast

Ethernet at 100 Mbits/s).The performance of the parallelization is probably boosted using a more advanced

switch for instance a MirinetTM [15].
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